سيلينيوم Selenio Selen Selen Selenium Sélénium सेलेनियम Selenio セレン Selen Selênio селен Selen Selenyum


78.96
34
Se
Sélénium
Non métaux
[Ar] 3d10 4s2 4p4
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Lr
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No

En un coup d'œil

Etat chimique

solide

Origine

nucléosynthèse explosive

Stabilité

3 ou + isotopes stable ou quasi-stable

Symbolique du nom

astronomie

Période de découverte

19e siècle

Structure cristalline principale

hexagonal

Généralités

Description

Se trouve sous forme de métal argenté pour l'un des allotropes ou sous forme d'une poudre rouge amorphe moins stable.Brûle à l'air, n'est pas affecté par l'eau, se dissput dans l'acide nitrique concentré et en milieu alcalin.

Usage

Utilisé dans les cellules photoélectriques, les photocopieuses, les panneaux solaires et dans les semi-conducteurs.

Illustration

Etymologie du nom

Du grec selene, lune

Symbolique du nom

astronomie

La symbolique de l'étymologie du nom permet de regrouper les éléments suivant plusieurs thèmes nés dans la plupart des cas de l'inspiration des savants qui leur ont donné un nom.

❯❯ Voir toutes les valeurs

Couches électroniques

2, 8, 18, 6

Représentation symbolique de la distribution des électrons suivant les couches électroniques de l'atome. Les couches sont dans l'ordre suivant, à partir du noyau: K L M N O PQ. La couche K a une capacité de 2 électrons, la couche L une capacité de 8 électrons, la couche M une capacité de 18 électrons, les couches suivantes ont une capacité de 32 électrons.

Découverte

Date de découverte

Découvreur(s)

Le ou les savants à l'origine de la découverte de l'élément.

❯❯ Voir toutes les valeurs

Jöns Jacob Berzelius
Suede
1779
1848
Johan Gottlieb Gahn
Suede
1745
1818

Réglementation (SGH)

SGH06 Toxique
SGH08 Sensibilisant, mutagène, cancérogène, reprotoxique

Le Système Général Harmonisé (SGH) est un système international d'étiquetage des matières dangereuses. Il vise à unifier les différents systèmes nationaux en vigueur. Le symbol "Radioactif" n'est pas inclus dans SGH.

❯❯ Voir toutes les valeurs

Famille

Non métaux

Classification principale des éléments selon leurs propriétés. Peut également être appelée série chimique. Cette classification recoupe très largement les groupes qui organisaient les premières versions de la classification périodique.

❯❯ Voir toutes les valeurs

Etat chimique

solide

L'état chimique définit l'état de la matière à une température et une pression données, en général, ces conditions sont égales aux conditions standards.

❯❯ Voir toutes les valeurs

Masse

78.96 g/mol

Structure cristalline principale

hexagonal

Structure correspondant à l'arrangement des atomes dans l'espace au niveau du motif élémentaire, appellé maille. Ce motif est répété dans les 3 dimensions pour former le cristal.

❯❯ Voir toutes les valeurs

Origine

nucléosynthèse explosive

L'origine montre la source principale de provenance de l'élément chimique. Outre les différents types de nucléosynthèse (primordiale, stellaire, explosive ou spallation) l'élément peut être issu de la désintégration d'éléments plus lourds et présent naturellement sur terre ou au contraire ne peut exister qu'à partir d'une synthèse artificielle.

❯❯ Voir toutes les valeurs

Stabilité

3 ou + isotopes stable ou quasi-stable

Stable: l'élément possède au moins un isotope stable ou quasi-stable. Radioactif: l'élément ne possède pas d'isotope stable.

❯❯ Voir toutes les valeurs

Propriétés

Electronégativité (Pauling)

2.55

L'électronégativité représente l'attirance d'un atome envers les charges négatives (électrons). Elle permet de décrire le comportement des électrons lors de la formation d'une liaison chimique. L'échelle de Pauling est très largement utilisée pour cette propriété, Elle a été proposée par Linus Pauling en 1932.

❯❯ Voir toutes les valeurs

Electronégativité (Allred)

2.48

Échelle alternative caractérisant l'électronégativité proposé en 1958 par A. L. Allred et E. G. Rochow. Elle correspond au rapport entre la charge effective de l'atome (relative à tous ses électrons) et le carré du rayon de covalence.

❯❯ Voir toutes les valeurs

Etats d'oxydation [Principaux]

-2,-1,1,2,[4],[6]

Type de charge

covalent(s)

Classement des éléments suivant l'espèce principale: covalent, anion, cation.

❯❯ Voir toutes les valeurs

Ions simples

Se+II

Ions caractéristiques

Rayon atomique (mesuré)

115 pm

Le rayon atomique peut être déterminé par diffraction aux rayons X en mesurant la distance entre deux atomes voisins bien que dans l’absolu il n’existe pas de frontière nette du nuage électronique. Le rayon est exprimé en pm (pico mètre = 10-12 m).

❯❯ Voir toutes les valeurs

Rayon atomique (calculé)

103 pm

Rayon atomique calculé à partir d'une formule fonction du nombre quantique principal n, de la charge effective du noyau et du rayon de Bohr. Le rayon est exprimé en pm (pico mètre = 10-12 m).

❯❯ Voir toutes les valeurs

Rayon covalent

116 pm

Le rayon covalent est défini comme la demi-distance d'une liaison covalente entre deux éléments identiques au sein d'une molécule. Il s'agit ici du rayon impliqué dans les liaisons covalentes simples. Il est exprimé en pm (pico mètre = 10-12 m).

❯❯ Voir toutes les valeurs

Rayon ionique

50 pm
4

Rayon de la forme ionique principale (donnée par sont degré d'oxydation principal, indiqué en dessous). Mesuré à partir de la distance entres cations et anions d'un cristal ionique. Le rayon est exprimé en pm (pico mètre = 10-12 m).

❯❯ Voir toutes les valeurs

Rayon de Van der Waals

190 pm

Il s'agit du rayon qui détermine la position la plus favorable d'un atome par rapport à un autre, la distance adéquate où les potentiels répulsifs et attractifs des atomes s'équilibrent. Il est particulièrement utilisé pour modéliser comment les molécules organiques "s'approchent" les unes des autres. Il est exprimé en pm (pico mètre = 10-12 m).

❯❯ Voir toutes les valeurs

Rayon métallique

-

Rayon atomique intervenant lors d'une liaison métallique exprimé en pm (pico mètre = 10-12 m).

❯❯ Voir toutes les valeurs

Masse volumique

4790 kg/m3
(solide 293K)

La masse volumique caractérise la masse par unité de volume, elle s'exprime en g/cm3. Elle est ici exprimée pour les conditions de température et d'état chimique indiquées (en général à l'état solide).

❯❯ Voir toutes les valeurs

Volume molaire

16.48 cm3/mole
(solide 293K)

Le volume molaire de chaque élément représente le volume occupé par une mole de matière. Il est ici exprimé pour les conditions de température et d'état chimique indiquées (en général à l'état solide).

❯❯ Voir toutes les valeurs

Point de fusion

490 K
216.9°C
422.3°F

Le point de fusion correspond à la température pour une pression donnée à laquelle le corps donné passe de l'état solide à l'état liquide. Les températures sont données pour la pression atmosphérique standard au niveau de la mer.

❯❯ Voir toutes les valeurs

Point d'ébullition

958.1 K
685.0°C
1,264.9°F

Le point de d'ébullition correspond à la température pour une pression donnée à laquelle le corps donné passe de l'état liquide à l'état gazeux. Les températures sont données pour la pression atmosphérique standard au niveau de la mer.

❯❯ Voir toutes les valeurs

Enthalpie de fusion (ΔHf)

5.1 kJ/mol
❯❯ Voir toutes les valeurs

Enthalpie de vaporisation (ΔHv)

26.32 kJ/mol
❯❯ Voir toutes les valeurs

Capacité thermique

0.32 J/g/K
❯❯ Voir toutes les valeurs

Conductivité thermique

2.04 W/m/K
❯❯ Voir toutes les valeurs

Résistivité électrique

0.01 Ω.m
(solide 293K)

Nombre d'isotopes

25

Il s'agit du nombre d'isotopes connus pour chaque élément chimique. Ce nombre est une des propriétés nucléaires et reste dépendante du nombre de protons.

❯❯ Voir toutes les valeurs

Nombre d'isotopes Quasi stables

1

Isotopes émeteurs β + / p

9
❯❯ Voir toutes les valeurs

Isotopes émeteurs β - / n

10
❯❯ Voir toutes les valeurs

Isotopes émeteurs α

-
❯❯ Voir toutes les valeurs

Isotopes ayant un noyau Fissile

-

Configuration électronique à l'état fondamental

[Ar] 3d10 4s2 4p4
❯❯ Voir toutes les valeurs

Exception à la règle de Klechkowski

Il existe des exceptions à la règle de remplissage des orbitales appelée règle de Klechkowski, certains métaux de transition ainsi que certains lanthanides et actinides ne respectent pas cet ordre. On observe alors un transfert entre leur sous-couche s (pour les métaux de transition) ou f (pour les lanthanides et actinides) au profit de leur sous-couche d ce qui permet à cette dernière d'être remplie (5 électrons) ou demi remplie (5 électrons). La légende est à interprétée de la manière suivante: 5s ⇒ 1 e- ⇒ 4d signifie qu'un électron passe de l'orbitale 5s à l'orbitale 4d.

❯❯ Voir toutes les valeurs

Configuration électronique théorique

[Ar] 3d10 4s2 4p4

Affinité électronique (de M à M-)

195 kJ/mol

C'est l'énergie dégagée lors de la capture d'un électron par un atome (de M à M-). Une valeur négative indique qu'il faut fournir de l'énergie pour que la capture se réalise. Les valeurs sont données en kJ/mol.

❯❯ Voir toutes les valeurs

Energie d'ionisation de M à M+

941 kJ/mol

L'énergie de première ionisation (de M à M+), est l'énergie nécessaire pour supprimer le premier électron de l'atome neutre : M+ symbolisant le premier cation.

❯❯ Voir toutes les valeurs

Les energies d'ionisation suivantes (M+ à M2+, ...)

[2] 2045 [3] 2973.7 [4] 4144 [5] 6590 [6] 7880 [7] 14990 2045,2973.7,4144,6590,7880,14990

En kJ/mol.

Spectre d'émission

Abondance dans l'univers

0/100 0.00016 %
❯❯ Voir toutes les valeurs

Abondance dans le système solaire

0/100 2.03E-7 %
❯❯ Voir toutes les valeurs

Abondance terrestre

0/100 8.0E-5 %
❯❯ Voir toutes les valeurs

Abondance dans la croute terrestre

0/100 0.05 mg/kg
❯❯ Voir toutes les valeurs

Abondance dans la mer

0/100 0.0002 mg/L
❯❯ Voir toutes les valeurs

Abondance dans l'atmosphère

-
❯❯ Voir toutes les valeurs

Abondance dans le corps

0/100 1.0E-7 %
❯❯ Voir toutes les valeurs

Principaux isotopes

Masse
A
Légende
Z
Mode de désintégration
Demi-vie
Abondance relative
73
73
Se
34
β-
7.15 heures
0%
73.9225
74
Se
34
stable
-
0.87%
74.923
75
Se
34
β-
119.78 jours
0%
75.9192
76
Se
34
stable
-
9.02%
76.9199
77
Se
34
stable
-
7.58%
77.9173
78
Se
34
stable
-
23.52%
78.919
79
Se
34
β-
65000 ans
0%
79.9165
80
Se
34
stable
-
49.82%
81.9167
82
Se
34
stable
-
9.19%

Unités de temps
  • µ secondes
  • milli secondes
  • secondes
  • minutes
  • heures
  • jours
  • ans
  • Stable

Légende des différents modes de désintégration

stable Isotope stable.
β- Désintégration β-: un neutron est converti en proton avec une émission d'un électron (particule β-) et d'un anti-neutrino.
β+ Désintégration β+: un proton est converti en neutron avec émission d'un positron (anti-électron, particule β+) et d\un neutrino.
EC Capture électronique.
α Radioactivité α: éjection d'une particule α (Noyau d'Hélium 4).
IT Transition Isomérique ou Isomérie nucléaire: émission d'un rayonnement γ.
SF Fission Spontanée: c'est une forme de désintégration radioactive caractéristique des isotopes lourds.
p Émission de proton (p).
n Émission de neutron (n).